学在北邮

/ Study in BUPT

首页 · 学在北邮 · 学术活动 · 正文

The synthetic instrument: From sparse association to sparse causation从稀疏关联到稀疏因果关系

主讲人 :王林勃 地点 :教三-105 开始时间 : 2023-04-26 10:00:00 结束时间 :

报告题目:The synthetic instrument: From sparse association to sparse causation

报告人:王林勃,多伦多大学统计科学系、计算机与数学科学系助理教授

主持人:姜竹青 副教授

报告时间:2023426号(周三)1000-1100

报告地点:教三-105


报告摘要:

In many observational studies, researchers are interested in studying the effects of multiple exposures on the same outcome. Unmeasured confounding is a key challenge in these studies as it may bias the causal effect estimate. To mitigate the confounding bias, we introduce a novel device, called the synthetic instrument, to leverage the information contained in multiple exposures for causal effect identification and estimation. We show that under linear structural equation models, the problem of causal effect estimation can be formulated as an L0 penalization problem, and hence can be solved efficiently using off-the-shelf software. Simulations show that our approach outperforms state-of-art methods in both low-dimensional and high-dimensional settings. We further illustrate our method using a mouse obesity dataset.


专家简介:

王林勃于2011年北京大学获得统计学本科学位,并于2016年获得华盛顿大学统计学博士学位,之后在哈佛大学的公共卫生学院担任博士后,目前是多伦多大学统计科学系和计算机数学科学系的助理教授。他还是Vector研究所的教师附属成员,加拿大国家统计科学和计算智能协会安大略省STAGE项目的导师,并且是华盛顿大学统计系和多伦多大学计算机科学系的联合助理教授。他的研究兴趣集中在因果推断及其与统计学和机器学习的交互。他的研究成果非常突出,目前已在统计学公认的四大期刊上发表十几篇重要文章,包括5JRSSB2JASA, 6Biometrika,另外还在很多非常优秀的统计学期刊发论文,比如BiometricsStatistica SinicaStatistics in Medicine



分享到

Baidu
sogou